UNCLASSIFIED
AR-004-637
DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

ELECTRONICS RESEARCH LABORATORY

REPORT

ERL-0372-RE

MANAGING SOFTWARE COMPLEXITY

P.F. Calder

SUMMARY

This report examines the methodologies and tools available
to the manager and programmer for assisting in the
development of large software projects.

POSTAL ADDRESS: Director, Electronics Research Laboratory,
Box 2151, GPO, Adelaide, South Australia, 5001.

UNCLASSIFIED

10.

11.

12.

13.

1.

2.

3.

TABLE OF CONTENTS

INTRODUCTION

AIM

THE IMPORTANCE OF USER REQUIREMENTS
MANAGING SOFTWARE CONTRACTS
SOFTWARE DEVELOPMENT METHODOLOGIES
THE IMPACT OF SOFTWARE TOOLS ON METHODOLOGIES
DATA MANAGEMENT

ADA PROGRAMMING LANGUAGE

ADA PROGRAMMING ENVIRONMENT
SOFTWARE DEVELOPMENT TCOLS

10.1 Requirements tocols

10.2 Design tools

10.3 Coding tools

10.4 Testing tools

10.

w

Software maintenance

10.6 Office administration tools

CONCLUSIONS

RECOMMENDATIONS

ACKNOWLEDGEMENT

REFERENCES

LIST CF APPENDICES

I AUTOMATIC PASCAL TO ADA TRANSLATION

IT DATA MANAGEMENT IN A TACTICAL COMMAND INFORMATION SYSTEM

LIST OF FIGURES
Cost of correcting a mistake in requirements
Software lifecycle diagram

Software development methodology

ERL-0372-RE

Page

10
11
12
13
13
14
18
21
21
22
22
23

24

29

39

-1- ERL-0372-RE

1. INTRODUCTION

The brief history of computing projects is littered with the wreckage of
software developments which cost too much, took too long or were never

completed satisfactorily. On the other hand, many other projects were very
successful. This wvariability in software implementation has concerned
software designers, and slowly the process of developing programs has become
better understood(ref.l). The term software engineering has come into use,

implying a concrete design methodology which is guaranteed to produce desired
results. This implication is not fully justified, but it is true to say that
the practice of a proven design methodology increases the probability that a
software project will be completed successfully.

The size and complexity of software projects is growing exponentially, not
only because of the increased sophistication and functionality of computer
systems, but also because computers are being used to perform tasks previously
carried out by other types of hardware. For example, computers are being
included in systems to provide control capability performed manually before.
The use of computers in modern tactical fighters and commercial aeroplanes is
indicative of this trend. It is also true in the case of a tactical Command,
Control and Information System (CCIS), where computers are being applied to
areas which previously have had little more assistance than a typewriter.

Any software project, large or small, is developed within a framework of
system management and computer resources which include computers, language
compilers, source code editors. In recent vears this framework has been
termed the 'Software Development Environment'. This environment involves not
only writing programs, but also project management, system design, system
integration, system and program documentation, testing and software module

management. In a large project, these tasks are often full time demands, and
staff must be allocated to perform them. It was the inability to recognise

the differences between small projects requiring few staff, and large ones
requiring many staff, that resulted in failures and costly over-runs during
the 1960s. A large project is not simply a small project scaled up(ref.2).

As these differences were recognised, techniques began to evolve from the
primary need to provide control over software development. These techniques
were aimed at ensuring that:

(a) the right problem was being solved,

(b) progress was visible to managers,

(c) areas experiencing difficulty became apparent early, enabling staff to
be added, redeployed or removed, or the requirements to be renegotiated,

(d) system design decisions were documented, minimising the time new staff
needed to 'come up to speed’,

(e) components of the system fitted together properly.
However, it is only in the last few years that design methods, techniques and
software tools have begun to come together to form an integrated software

development methodology(ref.3).

This report has been prepared in response to Army Research Request:
(1159/82): Architectures for Automated Tactical Command and Control Systems.

ERL-0372-RE -2 -

2. AIM

The aim of this paper is to discuss the various software methodologies and
development tools that are available for large software development projects.

3. THE IMPORTANCE OF USER REQUIREMENTS

Most software methodologies take as their starting point a statement of user
requirements. The methodologies then assist in providing a disciplined way of
turning the reguirements into reality. It is extremely important, then, to
have an accurate and detailed statement of what the computer system has to do,
right from the start of the project.

It is inevitable that some details of the requirement will not be exactly what
is required. However, significant changes to requirements during the course
of a project can lead to confusion, cost escalation and time delays. Of
course, there is great pressure to accommodate the latest thinking into the
developing system, particularly if new concepts in user requirements may mean
that the current design will fall short of user's needs. Some compromise may
be necessary by deferring some new options until a subsequent software
revision.

The design methodology should include early exposure of the user to the system
as the project progresses. Detailed amendments to the requirements can then
be identified before significant effort has been expended on them. The means
of managing limited changes to the requirement should be part of the
methodology, so that the effects on the project may be monitored. The cost of
incorporating changes into the software under development increases
dramatically towards the end of the project, as figure 1 shows.

The development of the user requirement is outside the scope of this paper,
which deals only with managing software complexity. However, the fact remains
that the user requirements must include as much detail as necessary to define,
without ambiguity, exactly what assistance the system 1is to give the user.

This high level of detail is not easy to specify, particularly for a tactical
CCIS.

Computers are being introduced into the tactical information scene for the
first time. Users have been constrained in the past to perform functions
achievable by essentially manual techniques. Any system designed to support
current manual requirements will not satisfy for very long once users begin to
appreciate the enhanced capability of the new equipment. Of course, the use
of new equipment often requires different ways of doing things, which can
affect other functions and so on. The introduction of computers to this
'virgin' environment significantly alters the -tasks being performed in, often,
unpredictable ways.

Early CCIS projects (notably the US Tactical Operations System) failed because
they were too encompassing, and aimed at a moving target of user requirements.
Large software projects such as these should not be embarked upon until the
user requirements have matured sufficiently to be frozen. However, reaching
this point often requires considerable user education, and effective exposure
to different techniques and procedures. This can be achieved quite
effectively, through the use of a "test bed', or through 'rapid prototyping'.

A test bed involves setting up software to demonstrate as many of the staff
functions as necessary to give the user a familiar environment in which to
decide what his requirements are. Rapid prototyping is often used to provide
examples of alternative user interfaces to particular staff procedures, so
that the most promising can be incorporated into the test bed.

-3 - ERL-0372-RE

A third approach would be to develop a system in independent software modules,
(or groups of routines supporting particular functions), to requirements which
have been identified so far, and expand the modules in stages as further
requirements become clear.

Current research is directed towards software automation tools which will be
able to accept user requirements in some standard form and produce programs
directly(ref.4). Automation forces the software designer to expend a great
deal of effort on the requirement and specification phase of a project because
even program-writing computers cannot accept ambiguous inputs (refer to
Section 6). But, even without automation, the time spent at the beginning of

a project to get the requirements right will pay off right throughout. the
development.

It is essential, therefore, to have a comprehensive, detailed and accurate set
of user requirements available BEFORE a major software development project is
entered into.

The requirements must be in terms that the user can identify with and be
assured that they represent his needs. The fewer changes to requirements that
need to be applied to software being developed, the more likely that the
project will be completed successfully.

4. MANAGING SOFTWARE CONTRACTS
The management of a software project can be viewed from two important aspects:
(1) from the customer's point of view, and
(2) from the contractor's point of view.

The customer wants to monitor the software development to satisfy himself that
the project will meet the requirements, be on time and be within cost limits.

The contractor wants to deliver a product which the customer will be happy
with, but the contractor must at the same time, meet milestones and keep costs
under control.

The customer must understand clearly the problem to be solved, so that a
comprehensive user requirement document can be written, for issue with the
Request for Tender (RFT). The tighter the specification of the problem, the
easier it will be for potential contractors to evaluate the effort required,
and identify the areas of risk. As time means money, any requirement which is
not clearly defined in the ‘specification will have a higher contingency factor
added than one which has a straight forward and obvious sclution path. It is
reinforced again that the best requirements specification, from both customer
and contractor point of view, is one which contains no areas of uncertainty.

A widely publicised briefing can be one way of conveying the general
requirements and extent of a project to industry, so that companies may assess
their desire to be involved before providing formal expressions of interest.

After an RFT has been sent to companies which have expressed interest in the
project, sufficient time must be allowed for them to become familiar with the
problem, define their approach and prepare a response. This time could be
somewhere between three and six months, depending on the complexity of the
project.

When all tender responses have been received, the customer then has the major
task of evaluating the responses and selecting the most suitable.

ERL-0372-RE -4 -

Unfortunately, the selection will seldom be clear cut, with each tendered

approach having its own advantages and disadvantages. A set of selection
criteria should be established against which each response mayv be evaluated in
a manner which will be fair to all parties. Contract cost is obviously a

significant factor, but whole-of-life costs should also be considered to
account for maintenance charges. Guide lines for tender evaluation have been
laid down in the Commonwealth Purchasing Manual(ref.5) and these should be
followed where possible. Specialist agencies in Defence such as Defence
Science and Technology Organisation or Engineering Design Establishment could
be asked to assist in the evaluation process.

During tender evaluation, clarification may be needed from tenderers to
explain their written response. This must be carefully handled to avoid
giving opportunities to particular companies to change their bid.
Clarification should relate solely to their formal response to the RFT and be
offered to all contenders.

The RFT should specify the management and technical staff positions needed,
and request that the tender response provide the names and qualifications of
the personnel who will fill those positions. Of particular interest in
projects which are predominantly software based, is the ability of the
personnel which are designated in the tender response as being available to
work on the task. Variations in staff during the course of the contract
should be monitored to ensure that the standard of ability agreed to at
contract signing is maintained.

The contract which is finally signed should detail the necessary mechanics for
monitoring the course of the project. These would include:

(1) Defining a point of contact for formal exchanges between customer and
contractor on such matters as contract interpretation or requirements
clarification. Contractors may be given many opinions on questions of
interpretation, but only one should carry the contract seal of approval.

(2) Defining the means for providing day-to-day contact with the customer
on detailed requirements. User representatives should be encouraged to be
involved in day-to-day discussions with the contractor at the working
level, particularly for providing advice during the design process. The
user needs to educate the contractor into the fine details of the problem
so that a more useful solution may be produced. It is too late after
software has been delivered to say ''but that's not what I really wanted".
The customer will need to budget for providing personnel for this support,
including any travel required.

(3) Defining milestones related to specific demonstrated capabilities, and
tests which must be satisfied before payment of the milestone will be
approved.

(4) Defining a change control mechanism for managing changes to the
requirement which may occur as the project progresses.

It is important that progress on the task be visible to the customer, so that
problems in implementation may be identified early and steps taken to rectify
the situation. The methodology employed by the contractor should provide most
of this visibility, and provision should be made for the customer to attend
design reviews and major structured walk-throughs. Regular progress meetings
should be designated, with progress being demonstrated at the meetings.

Inevitably in a large software project, it will become clear that some of the
requirements may not be achievable. This could come about for a number of
reasons, including misunderstanding of the original requirements, changes to

-5 - ERL-0372-RE

other requirements having adverse side effects, or simply that the achievement
of the requirement may be too costly. The contractor should be free to refer
to the customer to confirm the importance of the particular requirement, or to

see if the restriction may be relaxed. In some cases, the relaxing of a
constraint in a non-critical area may mean the success or failure of a
project. Obviously, if the requirement is a critical one, then the customer

has the right to insist on adequate performance.

Computer projects are rarely software based only, unless software is being
developed to run on existing equipment. The usual case involves both the
selection of suitable computer hardware which would interface to the user
environment, and the development of software to perform the user function.
However, conflicts can arise in setting the boundary between hardware and
software, particularly when some functions could be executed in either
software or special purpose hardware. For example, Ethernet protocols could
be implemented in a special purpose microprocessor, thus relieving the host of
responding to bit transitions on the net. Alternatively, the host could
manage the protocols itself, if it had plenty of spare capacity available to
satisfy the speed requirements. This kind of conflict can only be resolved by
considering both the hardware and the software aspects of the project.
Optimising on the basis of hardware only or software only could lead to
problems in achieving adequate performance. Areas where such judgements must
be made should be identified as early as possible in the project, as
performance may be effected, as well as having adverse cost implications. The
contractor should be obliged, very early in the project, to justify his choice
of computer equipments in relation to the application environment, the
required performance and the software workload. This justification should be
subject to customer approval before the project should be allowed to proceed.

At specific points in the task, software auditing should be carried out by
qualified auditors (possibly under separate contract) to verify the quantity
and quality of the work done to date, and to relate the work back to the user
requirements. The software documentation standards called for in the contract
can make this task easier, especially if comments included in software modules
directly relate to specific requirements.

At this point, it is worthwhile to note that a new US Department of Defence
Military Standard on Defence System Software Development (DOD-STD-2167,
JUN 85)(ref76) has been released, to supersede DOD-STD-1679A as the reference
applying to the development of embedded computer software. The standard
thoroughly specifies the formal documentation required for each of the phases
of the software life cycle (see Section 5) and also covers the following
topics:

(1) basic coding standards and in-line documentation,

(2) formal and informal test requifements,

(3) interface requirements,

(4) data base design requirements,

(5) baseline management,

(6) configuration control,

(7) software project planning, and

(8) reviews and audits.

ERL-0372-RE -6 -

There are a number of topics which are left for the contractor to specify in

the Software Development Plan (which should form part of his tender response).
These include:

(1) structured requirements analysis tool or technique,
(2) program design language,

(3) formal procedures to control all changes to baselined documents and
program materials,

(4) formal problem reporting and change system,

(5) procedures to generate periodic status reports on all products in the
developmental baseline, and

(6) software quality program.
The following sections of this report discuss topics which concern the
software contractor more than the contract supervisor. Nevertheless, the
steps needed to implement a software project must be understood by the
contract supervisor in order that his management may be effective.

5. SCFTWARE DEVELOPMENT METHODOLOGIES

A software methodology provides a disciplined approach to the controlled
development of a system from user requirements through in-service maintenance,

ie the whole life cycle of the system. It identifies all the aspects of a
project which need addressing, and defines procedures and mechanisms for
ensuring that the project will be manageable and well documented. A useful

tutorial on methodologies is found in reference 7.

Most methodologies assume the existence of a well defined user requirement,
and then describe the steps necessary to implement it and verify that all
requirements have been met. The previcus section of this paper has already

emphasised the importance of user requirements and this cannot be overstated.

The life cycle of a project can be conveniently represented by a 'waterfall'
diagram as in figure 2, showing how one phase leads into another.

A methodology should address all phases of a project, and include:
(1) Requirements Analysis, Definition and Verification,
(2) Design,
(3) Implementation,
(4) Quality Assurance,
(5) Testing and verification,
(6) Maintenance - corrective and adaptive,
(7) Documentation,
(8) Budgeting,

(9) Personnel deployment,

~7 - ERL-0372-RE

(10) Project review,
(11) Scheduling,
(12) Configuration management.

Some of these topics for example, documentation, apply to all phases of the
life cycle, while others may apply to different parts of a project at
different times. For example, testing may result in changes to the
specification which may require some modules to be redesigned.

By laying down procedures related to both the technical and managerial aspects
of a software project, the progress of the project can be monitored. Figure 3
defines the relationships between the various elements that make up a software
development environment(ref.8). A methodology makes work progress visible
through reviews at a number of intermediate checkpoints, so that problems can

be identified and corrective action taken. The effect on the project can also
be clearly seen.

A methodology should be simple, and easy to learn by the various project
members. The methodology should be well documented, so that not only original
project members but also new recruits can be made aware of their individual
and collective responsibilities.

The most widespread methodology in use today particularly in US, is that
advocated by Yourdon, Constantine and deMarco(ref.9,10,11), and promoted
throughout the world through seminars and workshops. A more readable text on
Structured Systems Design will be found in reference 10. Use is made of Data
Flow Diagrams, Structure Charts and a Data Dictionary.

The SPECTRUM methodology used by the Australian Department of Defence for
administrative computing projects(ref.12) incorporates the Yourdon/deMarco and
Jackson(ref.13) structured techniques of analysis, design and programming.
SPECTRUM is described in a set of manuals which support each aspect of a task.
The manuals do not include any automated tools to support the methodology, but
describe a non-automated approach to project development.

A methodology which has a large measure of support in the UK Ministry of
Defence is called MASCOT - Modular Approach tc Software Construction Operation
and Test(ref.14). It is particularly useful for implementing real time stand-
alone multiprogramming computer systems, since MASCOT describes, not only the
program implementation procedures, but also the run time support requirements.

MASCOT is programming language independent. However, many executive and
monitor routines have been written in Coral 66, as well as a library of
procedures. As Ada will become the official UK MOD programming language from
1986, MASCOT is expected to be used for Ada program development. Some of the
multitasking features of MASCOT are now included in the Ada programming
language, and the use of MASCOT to construct Ada programs is described in
reference 15.

The US DoD, as part of its Ada program, is currently going through a public
design process which will result in the definition of a preferred methodology.
The last description document is called 'Methodman' (ref.8).

While the advantages and disadvantages of a particular methodology may be
debated at length, it is absolutely essential that a proven methodoclogy be
chosen before any significant software development project is undertaken.
Project managers should ensure that the principles of the chosen methodology
are adhered to during software development.

ERL-0372-RE -8 -

6. THE IMPACT OF SOFTWARE TOOLS ON METHODOLOGIES

Current methodologies have developed from the need to provide rules and
procedures to support each aspect of the life cycle process. The use of these
procedures requires education of all the project members so that they apply
the rules properly. This adds a burden to the work load of each project
member, and the administrative overhead can become significant. There is
therefore a need to provide automated support to each phase of the project,
following the concepts enunciated in the methodology.

Structured Development Forum is a user's group devoted to advancing structured
analysis and design techniques. Semi-annual meetings are held on the west
coast of USA, and close ties are maintained with methodology tools available.
Further information can be obtained from Structured Development Forum,
Atlantic Systems Guild, 353 West 12th St, NY, 10014.

Software tools currently available tend to support single phases of the life
cycle, this most often being the coding and implementation phase. Recent
advances in tool concepts are leading towards the integration of several
individual tools into a composite software development environment supporting
a number of phases.

The emergence of these integrated tools will have a significant impact on
methodologies, as several development phases will be incorporated into the
tool itself. In particular, automated tool research is aiming at providing
the capability to generate programs directly from the task specification.
This approach has a number of significant advantages:

(a) The task specification directly leads to the code and is the only
entry point.

(b) Because the specification can be executed, its validity can be checked
immediately.

(c) Documentation requirements are reduced, as the code is regenerated
from the corrected specification.

(d) Automatic translation will lead to correct code, so that no time and
effort need be expended in testing and verifying code.

Automation forces the software designer to expend a great deal of effort on
the requirement and specification phases of a project. Engineers will spend
all of their time creating a specification and evaluating results.

Using such tools places very heavy emphasis on writing a complete and
consistent specification in a formal language. This language must define what
a program has to do, rather than how it will do it. Some progress has been
made in developing suitable specification languages(ref.4), but much remains
to be done.

How specifications can best be made complete and unambiguous is not vyet
settled. One school of thought advocates a graphical approach(ref.16),

defining a hierarchical decomposition interactively on a workstation. The
major problem with this 2-dimensional depiction is the complexity of the
display produced for a system of realistic size. The alternative approach

uses textual representation. Some combination of both approaches appears to
offer a viable long term solution(ref.l17).

-9 - ERL-0372-RE

Until these 'program writing' tools become more generally applicable, the
majority of software development will continue to be performed using the
traditional life-cycle approach, and making use of software tools designed to
support specific phases. However, the chosen methodology should allow for the
incorporation of new tools when they become available.

7. DATA MANAGEMENT

A significant factor in the management of software complexity, particularly
for a tactical CCIS, is the management of the data and design of the data
structures, used by the system. The importance of data management is
recognized by many software design methodologies in that the identification of
data elements and the way they are manipulated is given high priority in the
early software design phases. Data element analysis and data flow diagrams
are two such design techniques(ref.9,10,11).

The development of Data Base Management Systems (DBMS) as efficient self-
contained software packages has been of considerable assistance in removing
the complexities of data structure implementation from the design of the
application scftware which wuses those data structures. Designers can
therefore devote more time to making sure the data structures meet the design
requirements, and that the software meets the user's needs.

Most modern DBMS include more than just a means of storing data. They include
the following major software capabilities:-

(a) data definition language

(b) data dictionary

(c) data access language

(d) screen forms manipulation package
(e) data back-up procedures

(f) data storage and retrieval methods.

All application software should be written to access data via the DBMS and
should follow the standard interface to the DBMS for data access and update.
This disciplined approach helps to keep data usage visible and therefore more
manageable. It is recommended that a DBMS be utilized in any tactical CCIS in
order to assist in managing the complexity of the software development task.

Modern data base management is tending towards the relational data base model
first proposed by E.F. Codd in 1970. This model has the advantage of
simplicity, elegance and flexibility, when compared to others such as the
network or hierarchical models. A discussion of the relative merits of DBMS
models will be found in Appendix II. The relational data base model is
recommended for all tactical CCIS software development.

A DBMS can be implemented as a software package which can be called by the
application programs. Alternatively, the DBMS could be implemented on a
special purpose processor, called a Data Base Machine (DBM) which runs in
parallel with the application processor. In either case, the separation of
functionality through use of a DBMS aids the management of the software
development, and allows more freedom for choosing a system which best suits

the system requirements. Data Base Machines are further discussed in
Appendix II.

ERL-0372-RE - 10 -

- One data base access language is rapidly becoming a standard for relational
data bases. This is Structured Query Language (SQL) which can be used either
for screen-driven direct queries of the data base, or by application programs
for implementing a specific user function. It is recommended that SQL be
chosen as the query language for all tactical CCIS developments.

While a DBMS may not be applicable to all scoftware development projects, their
use in a tactical CCIS software development is seen as essential if the data
design and application software interface are to remain manageable. The
choice of a suitable relational DBMS will significantly reduce the cost of
developing tactical CCIS software, but at the possible price of requiring
additional computing power.

&. ADA PROGRAMMING LANGUAGE

The US DoD initiated, in 1980, the development of a programming language which
would become the standard one used throughout the US Department of Defence.
This aim has been achieved, in that from 1985, all new projects for the US
Armed Forces are obliged to use Ada as the programming language for embedded
computer systems. However, the change to the use of Ada will not occur
overnight, as some existing systems will continue to be developed in a non-Ada
language for some time to come.

It would seem sensible for Australia to adopt a similar policy on a standard
language for command, control and information systems, particularly as few
tactical computer systems have yet entered service. There are many advantages
which would flow to the Australian Defence Forces through the use of one
programming language.

(a) Programmer training. Less training would be required when moving
programmers from project to project, both because the same language would
be used, and also because the programming environments would be similar
(Refer to the next section on Ada Programming Environments).

{(b) Software reuse. A standard language will allow the development of
libraries of standard software modules which could be used in many
projects.

(c) Software maintenance. Programs written in Ada are much easier to
maintain than in other languages. In addition, Ada features are so

comprehensive that machine language routines (which are notoriously hard to
maintain) are unnecessary.

However, such a policy is not without its difficulties:

(a) A number of existing or proposed Defence information systems are based
on US software packages, with modifications incorporated by Australian
support centres to bring the packages into 1line with Australian
requirements. Changing to Ada would not be feasible unless the US supplier
released an Ada version. In that event, all the Australian modifications
would need to be reapplied to the new Ada version. 1If it was desired to
keep to the old version, then support from the supplier would probably fall
to zero as the old language expertise was phased out. It would seem
sensible to build up an Ada programming team at the Australian suppert
centre, so that the transition could be completed before US support for the
cld system ceased.

(b) The number of programmers experienced in Ada will remain low for some
time until the use of Ada becomes more widespread in Australia. Ada is
included in most Computer Science curricula, so that new graduates have at

- 11 - ERL-0372-RE

least some knowledge of the language. Ada is a defence sponsored language.
Commercial organizations will have little need to convert to Ada unless
they intend responding to defence software contracts. However, if Ada
lives up to expectations, it will be increasingly used in both defence and
non-defence applications. This process could be hastened by the Australian
Defence Department sponsoring educational programs to increase the
availability of Ada programmers, and encourage the more general use of Ada
in industry. Industry seems reluctant to lead, but prepared to follow.

When the decision to use Ada is made for a project, there will probably

already exist some software written in a non-Ada language. This software
could be rewritten in Ada, thus incorporating any new advance in program
design that Ada permits. Alternatively, the old program could be

automatically translated into Ada, statement for statement, and therefore not
taking advantage of new language constructs that Ada supports. It would seem
sensible to directly translate into Ada small programs which were not critical
to the project, but to redesign and rewrite in Ada, programs which are
critical, or have a long lifetime. Maintaining Ada programs which do not
reflect good Ada style would be difficult and void one of the major advantages
of Ada. Some tools are beginning to emerge to aid in the translation
process(ref.18), and they can be useful in some circumstances. A discussion
of the utility of Pascal to Ada translation is included in Appendix I.

The problems that may occur by introducing Ada as a standard language are

transient ones, although they may require effort in the short term. The
advantages of introducing Ada, on the other hand, are long term ones, with
benefits which will increase with time. The longer the move to Ada is

deferred, the more significant will be the effect on a larger number of
developing projects, and the harder it will be to introduce the standard. It
is recommended that Ada be adopted as the ADF standard computer language
without delay.

9. ADA PROGRAMMING ENVIRONMENT

As well as specifying Ada as a programming language, the US DoD also attempted
to define a programming environment which would provide a set of common
facilities which would be independent of the computer on which they would run.

Reducing the proliferation of support environments will allow for more
effective transfer of managers and programmers from one project to another, as
well as provide for more uniform supervision of contracts by the DoD.

The development of an Ada Programming Support Environment (APSE) was intended
to be guided by a series of documents which would provide a progressively more
detailed definition. However, an APSE is far more complex to define than is a
language, and general agreement on what features to include has been slower to
achieve than for the language itself. The APSE features are outlined in the
latest document called 'Stoneman'(ref.19).

The aim of the APSE is to define:

(a) a set of user-friendly tools to improve both management control of
life-cycle processes and programmer productivity,

(b) a configuration control data base, and

(c) a Kernel APSE (KAPSE) interface to enhance portability.

ERL-0372-RE - 12 -

The APSE provides tools for Ada program development. These include editors,
libraries, library managers, debuggers, frequency and timing analysers, file
copiers and other file handling tools, data base tools, and program loaders.
Some of these will be discussed in the next section.

The APSE tools must be designed to run on different machines(ref.20). The
machine dependent routines are defined as a separate Kernel APSE which
supports a standard interface to the APSE tools. The KAPSE defines a number
of Ada packages which provide the interface services. The package bodies are
implemented to support a particular machine environment. In this way, the
APSE tools can be easily ported from one machine to the other.

The first APSE to achieve validation was the US Army's Ada Language System
(ALS) developed under contract by Softech, for a VAX running the VMS operating
system. . The US Navy and US Air Force are also developing their own APSE.

The 'Stoneman' APSE requirements document does not refer to any specific
software methodology. However, it is expected that APSEs will emerge which
will support individual methodologies.

When planning to use Ada as the programming language for a project, it is
equally important to select an environment which will support the standard
APSE, as well as incorporate the tools needed to support the chosen
methodology.

10. SOFTWARE DEVELOPMENT TOOLS

It is only relatively recently that automated software tools have emerged from
the research laboratories and have been offered as reliable, robust products
in their own right. Obviously such tools have to perform flawlessly in
support of a project, or no-one would ever be prepared to use them. A large
project could suffer badly if some tool around which the project was
structured, was found to be unreliable and prone to failure.

When a particular tool is not commercially available, it may be necessary to
build one using general purpose packages such as relational data base systems,
screen management software and a structured data base query language. While
such special tools.may not be very efficient, they may, nevertheless, be very
useful. Such a tool may be needed, for example, to support the requirements
phase in the form of a requirements dictionary. The purchase of tools,
training of staff in their use, development of special tools and their
maintenance will require the permanent allocation of staff for this purpose.
Software tools are not unlike 'tools-of-trade' in many other disciplines, and
the importance of such tools should never be in dispute, or underestimated.

t must be realised that the use of software tools to support a methodology
will impose a significant load on the computer and its storage devices during
development. This development load must be taken into account when sizing the

computer and its peripherals to be used for the programming support
environment.

As mentioned in Section 5, software support tools are appearing to support omne
or more phases of the software development life cycle. This section will
discuss the type of assistance that may be provided by these tools.

- 13 - ERL-0372-RE

10.1 Requirements tools

Requirements tools assist in turning a user requirements document into a
definitive statement of requirements on which to proceed. This process is
termed 'structured analysis' in references 9,10,11. Requirements analysis

is not a well understood area, and Section 5 noted that consensus on the
best method has not yet emerged.

(a) Directly executable specifications are one technique for providing
immediate feedback to the user and designer that the system is on the
right track(ref.4).

(b) Rapid prototyping is a method useful for quickly providing the user
with examples of user interfaces, such as screen menus and formats, as
well as menu switching for controlling the task flow. These tools go
part way along the path that leads to a test bed, but uses a general
purpose approach(ref.21).

(¢c) Requirements specification languages provide a formal way of
capturing the data flows, tasks and procedures which are inherent in the
user requirement. Formalizing the needs helps check for consistency and
completeness of the specification(ref.22).

(d) Data flow diagrams are a very useful 'tool' for documenting a
system from the point of view of data, rather than of control or of

functionality. Users can quite readily follow these diagrams, and
quickly didentify any deficiency in the basic analysis. Data flow

diagrams allow the system to be more logically partitioned 1into
conveniently managed slices.

(e) Requirements dictionary is a data base containing details of each
identified requirement, and in which program modules it is addressed.
This tool may be application dependent and may need to be configured for
a particular task. It is a wuseful tool for ensuring that each
requirement has actually been addressed in some module, and can be
referred to by name.

10.2 Design tools

The functions of a design tool are to capture the logic and structure of a
program at a level higher than code, and to devise a model of the proposed
solution to the problem. Cross referencing with the requirements
dictionary can check for completeness and consistency.

These tools include Program Design Languages, Design Data Dictionaries and

graphically based design aids for representing structures and
relationships.

A number of Program Design Languages are available, but those based on Ada
are of particular interest(ref.23,24,25). The process of program creation
is traditionally divided into two phases ~ design and implementation. The
purpose of design is to define suitable modules, with implementation
actually producing the code. Ada contains elaborate constructs to support
the implementation of program modules or packages. Using Ada as a PDL as
well as an implementation language may seem absurd. However, the higher
levels of a system can be written in Ada, leaving details of procedures and
packages open(ref.26). In some environments, this skeleton program can be
executed after a fashion to check for consistency across module interfaces.

ERL-0372-RE - 14 -

Anna (for Annotated Ada) is an Ada based PDL from Stanford
University(ref.27). It achieves executable Ada extensions that permit
programs to be verified. The sequences "-|" and "-:" are ignored by an Ada
compiler, but are used to indicate Anna statements to an Anna compiler.
Programs are designed in Anna, and then Ada code is added to implement the
required functions. Anna statements are thus interspersed with Ada code
and become high level comments to the Ada program. The Anna statements can
be stripped from the Ada program to provide documentation.

A feature of Ada is its information-hiding achieved through the use of
package specifications and a separate package body. The package body can
be changed or improved at any time without affecting its calling process,
so long as it fulfills the specification. The package body can thus be
kept invisible from the user. However, to understand the visible services
an Ada package provides, the user often needs to study the package body.
Anna permits the addition of syntactic information to the visible
specification of Ada packages, thereby providing an understanding of how
the package body works.

Software design tools form a basic part of software methodologies. It is
important to choose design tools which are integrated or at least
compatible with the requirements tools discussed above. In particular, the
requirements dictionary and design dictionary have much in common and the
ability to cross reference from one to the other is very valuable.

10.3 Coding tools

Tools to assist the programming phase of the software development process
were among the first to appear, and so are the most numerous and best
developed. Nevertheless, only about 20% of a large software project is
devoted to producing code. Early coding assistance provided was in the
form of assembly language assemblers, high level language compilers and
high level Ilanguage interpreters. Text editors subsequently emerged as
valuable tools to support programming. Since then, a number of tools have
appeared to assist the coding process, and are discussed in this section.

(a) Source code editors

Initially program editors were line based to be usable on the printer-

type terminals then available. As video display terminals began to
proliferate, so editors changed to give programmers more visibility to
the edited text, considerably improving productivity. These screen-

based editors are now a relatively mature and sophisticated product, and
are an essential tool for any programming environment.

The next step in sophistication that is now becoming available is the
syntax-directed, or context sensitive editor. These editors are
language specific, and contain details about the structure of the
language being used. Using windows and menus, the programmer may select
a particular 1language construct. The editor then places the basic
structure into the program. The programmer then adds coding for his
particular application to complete the code segment. This assistance is
of particular importance for the Ada language where the number of
possible statement types is very large. Only one very familiar with the
language could expect to remember all the language constructs, and
perhaps all the details of only some of the more often used ones. The
editor thus behaves as an intelligent aide-memoire which can directly
influence the way programs are generated.

- 15 - ERL-0372-RE

It is possible also to select pre-defined package definitions via the
editor, which will not only facilitate program creation, but ease the
documentation burden on the programmer. For example, when a program is
initially created, a standard one or two page package description header
could be invoked, with the programmer filling-in entries to describe his
application. In large software developments, it is essential to provide
copious comments in programs, not only for the programmer's benefit, but
also for later maintenance. It is not uncommon for up to 80% of a
source code file to be comments. Readability is enhanced if comments
are not interspersed with procedural code.

An extension of the 'intelligent' editor concept is the provision of a
choice of, not only language constructs, but complete code segments.
These segments would be defined by examining successful programs and
building up a library of code segments. An index system related to

function would be used to locate an appropriate segment from within the
editor.

An important feature of these language sensitive editors is that they
can directly check the program for syntax errors, that is errors in the
use of the language. This means that most programming errors would be
found before programs were submitted to the compiler. 1In an integrated
editing/compilation environment, the need to perform a syntax check by
the compiler could be avoided altogether, as these checks would have
already been performed by the editor.

The syntax checking process needs to be user-involved, to allow for
partly completed language statements. These would occur particularly
when code was moved from one part of the program to another. Automatic
syntax checking could become irritating if the programmer were to be
continually reminded of errors he already knew about and was in the
process of correcting.

(b) Source code managers

Source code control tools maintain a history of every change made to a
program module: which programmer made the change, when it was made, and
why it was made. Keeping a record of the status of program modules, and
a history of their development is very important in large projects when
the number of modules may be in the hundreds, or even thousands.
Reference to a module's history is valuable during both development and
testing, when the reasons for module modifications need to be understood
by a programmer who may not have written the original program or
performed any of the modifications himself. This situation would apply
particularly to the maintenance phase of the life cycle.

When modules are initially created, the first ‘version' must be
registered to the source code manager (SCM). Whenever a registered
module is to be modified, a programmer must indicate his intention to
the SCM which records the fact that he is in the process of modifying a
program module. The source code module will then be unavailable for
editing by others. When the module is returned to the SCM, its version

number is updated and the module can then be made available for others
to use.

Saving a copy of every version of every module used in a project could
be very expensive in file storage, particularly for large projects. To
alleviate this problem SCMs usually store only the differences between
one version and the next. Any version can thus be reconstituted by
applying the differences to the first version through to the required
version. This reduces the storage requirements for previous versions

ERL-0372-RE - 16 -

and results in an overhead of about 40% above that required for keeping
the latest version of each program. This overhead is not significant
when compared with the advantages gained by using the SCM.

The SCM tool can operate on any ASCII source file, including source
code, specifications or documentation. Its use goes beyond the coding
phase and helps keep track of all aspects of the project. In fact, the
SCM provides a very powerful management tool by which progress on
project deliverables, right down to individual module level, can be made
visible to managers, giving a better picture of where attention should
be focussed.

For example, if the number of versions of a module exceeds some norm,
the reasons could be investigated to see if some problem were
developing. Perhaps requirements have been changing, or too many coding
errors have been found.

The SCM history files can have very important legal implications for
projects involving life-critical functions such as passenger aircraft
control computers. Crash investigators may need to refer to the history
files of the modules that were installed on the computers in the crashed
aircraft, to help define the cause of the accident.

A Source Code Manager is essential for any large software project where
the coordination of many programmers writing many software modules, must
be managed efficiently.

(¢) Software release builder

During the course of project development, complete software packages
will need to be delivered to meet various project milestones, each
package containing specific modules of specific versions. This current
release of software would be sent to the customer, while expanded and
enhanced versions of modules would be being develcped for the next
release. There exists, therefore, the need for a tool which can
reconstruct a software package release by firstly identifying the
modules and versions which comprise the release, secondly, recompiling
all the identified source modules and thirdly, wverifying that the
resultant code image is identical to the one that has been tested and
approved for release. With a large number of modules involved in a
project, the administrative load imposed by managing progressive
software releases can be very high and prone to error. It can be very
time consuming trying to identify which module version number is wrong
when code images do not match, unless such a tool is used to enforce the
software release discipline. For large software efforts, such a tool is
indispensible.

(d) Rebuild Optimiser

Program modules form a hierarchy, with one module calling one or more
other modules. Once a module is fully debugged and tested, it can be
placed in the project library where it can be used by other modules.
However, during program development, program modules will change. This
will affect all those modules which call the changed modules. Depending
on the extent of the changes, modules higher up the hierarchy may need
to be recompiled and rebuilt, or only rebuilt. These dependencies need
to be managed by a software tool called a Rebuild Optimiser.

- 17 - ERL~0372-RE

A Rebuild Optimiser is a tool which, from a stored table of module names
and calling dependencies, assists in the task of compiling and task
building only these modules which are affected by changes to modules
comprising the rebuild.

In Ada, for instance, modules consist of a package specification and a
package body. If the body is changed, then all modules which call the
body must be rebuilt to incorporate the new body. All modules which
call the rebuilt module must also be rebuilt and so on up the calling
hierarchy chain. If the package specification is changed, then all
modules which call the changed module directly must be recompiled. Then
all modules which call recompiled modules must be rebuilt, following on
up the calling dependency chain.

It can be seen that keeping track of these dependencies manually would

be a very complex task and very prone to error or omissions. It can
also be appreciated that the rebuild process could be time consuming
when a large number of modules was involved. Without a Rebuild

Optimiser, there would be a tendency to rebuild or recompile ALL the
program modules but, while this would ensure that all required modules
were covered, the time taken could be prohibitive. An Ada compiler is
required to perform a large amount of checking, and this slows down the

compilation process. To compile modules unnecessarily would waste a
considerable amount of time, as well as put an unnecessary load on both
people and computers. A Rebuild Optimiser is seen as essential in a

software project.

The creation and maintenance of the dependency data base could be a
manual process, or it could be automatic by linking the process to the
Source Code Manager. When a modified program module was returned to the
Source Code Manager, the dependencies could be compared with the
existing ones and the stored record adjusted accordingly. This would
avoid relying on a manual procedure to identify any change to the
dependencies, a process which could easily be in error.

(e) Static analvsers

A static analyser takes the source code as input, and examines it for
certain types of errors. These include:-

(1) variables that are used but never set,

(ii) variables that are set but never used,

(iii) code that can never be reached.
Static analysers were developed to support FORTRAN source code, and to
make up for the lack of data type, mixed mode arithmetic or parameter
calling checks in FORTRAN compilers. Modern language compilers such as
Ada already include these checks so they remove these sources of error
from correctly compiled code. However, static analysers are still
needed to detect the above three enumerated errors. and also to document
the program module by providing the following information:

(i) Calling tree,

(ii) Global variable cross reference,

(iii) Breakdown by statement type,

(iv) Local variable cross reference.

ERL-0372-RE - 18 -

(f) Frequency analvsers

A frequency analyser uses the source program as input and, using a set
of test inputs to the program module, produces a histogram of the number
of times each code statement is executed. In this way, it can be seen
where the main program loops are, so they can be examined and reduced to
the minimum required to perform the function. The results of a
frequency analysis should not be used in isolation, as some very
frequently executed statements could be very fast, while some used less
frequently could be much slower. It can be counter productive to spend
a great deal of effort on sections of the code which will not
significantly effect the performance.

(g) Timing Analysers

A Timing Analyser (sometimes called a Performance Analyser) evaluates
which parts of the program consume the most time. These analysers need
tc be carefully designed to avoid influencing the performance of the
program under test.

It is often found that most of the execution time of a program is
consumed in only a small part of the code. This tool helps to identify
those parts of the program which need to be streamlined to execute as
efficiently as possible, and which parts have little influence on the
execution time. The tool can save wasting a lot of time improving code
which is of no real importance.

Frequency and Timing analysers could be considered to be programming or
testing tools depending on how they are used. They could be used quite
effectively by the programmer before formally passing his module to the
testing staff for integration testing in conjunction with other modules.

These tools are primarily designed to help the programmer write better
code.

10.4 Testing tools

Program testing consists of a scattered collection of rules of thumb,

coverage measures and testing philosophies. Currently there is no tool
which can take as input a program requirement, and produce verification
that a particular program meets that requirement. Research is being

directed towards this goal, but there is no testing procedure yet available
that can guarantee that a program will perform exactly as required.

However, functional testing theory has reached the stage where specific
types of faults can be detected using a functional analysis tool(ref.28).
The fundamental idea in functional testing is that a program computes one
or more functions, and to test the program, each function must be tested
over functionally important test cases. However, until this tool is

available, testing will continue to rely on methods and techniques which
are less than perfect.

Program testing can be performed using a top-down or bottom-up approach, or
both(ref.29). Top-down testing is useful when lower level modules are not
yet available, either because algorithms are still being developed or

interface hardware is not yet ready. Simple routines (or stubs) which
simulate the operation of a particular module or group of modules can be
written and linked with the top level calling modules. In this way the

high level logic of the system can be confirmed at an early stage.
Eventually the stubs would be replaced by the modules they represent.

- 19 - ERL-0372-RE

Bottom-up testing is often used for these lower level modules, with groups
of modules replacing the stubs developed for the top-down tests.

Initially, the programmer subjects his module to a range of tests by
writing test routines which will provide an appropriate set of inputs which
should produce a desired set of outputs. When the module's performance is
satisfactory, the program is passed to the next level of testing where it
will be integrated with a number of associated routines to form a larger
module. This is then tested in a larger environment to detect errors
before being passed on to further integration tests. At some point, the
lower level modules will be integrated with the top level modules, and the
complete integrated system test can then begin.

Module testing usually detects programming errors, integration testing will
detect design errors, while acceptance testing will determine specification
errors. That is, errors made early in the project may be the last to be
detected and often the most expensive to correct. Top down testing helps
to determine errors in the interpretation of user requirements, and
provides the user with an early verification of the man/machine interface.

Testing is required during initial module development, but if a program
module is ever modified, all testing involving that module should be

repeated. Modification can lead to other errors and side effects which can
be totally unexpected.

The effort required to thoroughly test program modules, particularly
mission critical ones, should not be underestimated. The staff allocated
to testing can often exceed the number allocated to program development.
Several tools are available to assist the testing process.

(a) Debugger

A debugger is the most basic of testing tools, although modern debuggers

have become very sophisticated. This tool allows the programmer to
execute his program in single statements at a time and view the results,
or to execute groups of code statements, then view the results. He can

interactively monitor, control or modify the execution process of the
program under test.

Modern debuggers work in a window environment, so that results can be
viewed in one window while the executing statements are displayed in
another window. Switching to the editor for program correction can be
easily done before testing the program again.

A debug tool is essential in any program development environment.

(b) Path coverage

In mission critical software, and this must include most CCIS software,
it is essential to know that every possible data flow path through a
program has been tested. This involves setting up test inputs in a form
that all paths should be covered, and then executing the routine under
control of the path coverage tool. This tool provides an analysis of
which statements have been executed and which paths have been followed.
Some contracts demand documented evidence that all possible paths have
been executed at least once. This is difficult and very time consuming
to prove manually.

ERL-0372-RE - 20 -

(¢) Test manager

A test management tool maintains a data base of test cases and expected
results for various software modules and suites used in the system.
This tool can assist in writing the test specifications for each part of
the system and in keeping a record of where failure to meet the test
requirements has occurred. It could be 1linked to the source code
manager tool to ensure that modules that have been modified are also
retested, or else reasons for not testing need be given and recorded.

(d) Environment simulator

Instead of testing an embedded computer in its external environment
(which may or may not yet exist), it is often very much worth while to
provide a simulated external environment which will exercise the
computer system with actual or simulated inputs. A command and control
system simulator might be another computer which sends and receives
representative tactical messages through a simulated or actual
communications link. The simulator could also include human operators
manning screens in some instances, with automatic recording of results
for later analysis.

(e) Target machine emulator

A software emulator is sometimes necessary, particularly in cases where
the computer which is used for software production is different from the
one which will run the generated code. This will normally be the case
for Ada program development, where the host computer could (for example)
be a VAX, while the code generated is to run on (for example) a 68000
microprocessor. The machine code instructions of the target machine can
be emulated on the host, enabling programs to be run as if they were on
the target machine. This kind of testing is useful for finding logical
program errors, but is not so useful where real time interrupts must
interact with the program.

A host/target environment has always been advocated for the Ada language
support system, with Ada compilers being able to generate code suitable
for a number of target machines, including the host itself. A
significant amount of debugging can be carried out on code which runs on
the host, enabling logical errors to be detected. Later, code for the
actual target machine would be generated, and then run using the target
instruction emulator. Finally, the code can be loaded into the target
machine itself and tested in a hardware/software environment simulator.
Later, the complete hardware/software suite can be linked to the system
in which it is embedded, and full integration tests run.

(f) In-Circuit Analyser

Considerable testing can be done using emulators and simulators, but
once the software is loaded into its actual execution machine, faults
can still occur. In fact, the 'obvious' errors have already been found
by previous testing, with the more subtle ones still unknown. An In-
Circuit Analyser(ref.30) assists the analyst to peer into the target
computer and observe the action and reaction of the software to its
environment.

In-Circuit Analysers provide a high speed interface to the target
computer address and data bus, and to selected signals which are part of
the operating environment. The simplest 'state' analyser decodes the
instructions appearing on the bus and displays the execution sequence.
More sophisticated 'symbolic' analysers recognise processor functions

- 21 - ERL-0372-RE

such as entry and exit from procedures, or when particular variables are
changed. From the symbolic trace, the user gains a picture of program
and data flow without being inundated with too much information. Timing
and path coverage can also be provided. '

The problem of adequately testing computers which form part of a larger
system is a real one, and will often involve construction of special
purpose software and hardware particular to the application. Adequate
funding must be provided to perform these integration tests properly.

10.5 Software maintenance

Once a system has been accepted by the customer, the period of software
maintenance begins. This involves:

(a) correction of any errors in the delivered code,

(b) correction of mis-understandings in the user requirement (by either
customer or sponsor),

(¢c) minor enhancements to the system as a result of operational use,
(d) major enhancments due to increased expectations.

It has been estimated for the US DoD, that 80% of the total software life
cycle effort is devoted to software maintenance. The whole thrust of the
DoD Ada initiative has been to provide a language which will make program
maintenance easier, and therefore cheaper.

Invariably, the programmer who writes a module is not the one who maintains
it. The maintainer requires good documentation if he is to apply
modifications and corrections with confidence that no side effects will be
caused. It can help considerably if the original design specifications for
a module are available to him. The documentation required also includes a
self documenting language such as Ada, the use of standard comment header
pages at the start of every program module, copious blocks of comments
within the code, and the record of the module's development history.
However, interspersing one or two lines of comments within procedural code
can make the program logic hard to follow, and defeat the purpose of having
the comments there at all.

The initial problem for the maintainer is to understand the module which
needs to change. He may well need to look at and understand other modules
which have some bearing on the modification, particularly for large
changes. When sufficient understanding has been reached, the process of
design, implementation, debug and test must be undertaken in as rigorous a
manner as occurred when the program was originally produced. Thus, all the

tools used for production must be capable of assisting the maintenance team
too.

10.6 Office administration tools

All software projects generate large amounts of documentation in the form
of specifications, manuals, minutes of meetings, progress reports etc.
These documents often include diagrams and charts, some of which are
required to be used in management presentations on overhead projectors.

An integrated package containing a word processor, graphics manager and a
spread sheet is a very useful tool in the software development environment,
in conjunction with a good quality, fast printer capable of printing
graphics as well as text. '

ERL-0372-RE - 22 -

Other tools are also available which assist project documentation. These
include a spelling checker, index generator, synonym dictionary and an
"English teacher" for finding cliches, trite phrases, sexist language and
'dead wood'. It can also give a measure of difficulty of understanding of
the document based on indicators such as the length of sentences.

It is essential for project management to be aware of the administrative
tools that are available to assist the project, and to select the ones that
are appropriate for their method of working. This process of tool
selection is an on-going one and requires continual process of review,
selection of new tools and staff training.

11. CONCLUSIONS

This report has discussed the means and methods currently available for
developing software for large information systems. It is concluded that the
use of a disciplined methodology is essential if the complexity of modern
software systems is to be managed effectively. Full recognition must be made
that the use of computer based tools to help in the software development
process is not a luxury but an absolute necessity. Methodologies and design
tools by themselves do not ensure success, but their intelligent application

to a software project will significantly improve the likelihood that a project
will reach a satisfactory conclusion.

12. RECOMMENDATIONS

(1) A well disciplined approach defined by a comprehensive methodology is
essential for managing effectively large software projects. Large projects
are much more than small projects scaled up.

(2) Before undertaking any task involving significant software
development, it is imperative that wuser requirements be defined as
accurately and as detailed as possible. Projects fail when requirements
are ill defined and variable.

(3) Rapid prototyping or a test bed approach is recommended for reducing
uncertainty in user requirements before the software design is frozen.

(4) Military Standard "Defence System Software Development (DOD-STD-2167)"
should be followed, particularly if embedded software is involved.

(5) A methodology should be chosen which allows for the introduction of
new software tools when they become available.

(6) Maximum use should be made of modern software tools to assist all
phases of the software life cycle.

(7) Only extremely reliable and well supported software tools should be
used for software development.

It is recommended that (at least) the following software tools be used
during software developments:-

(1) Requirements dictionary,

(2) Rapid prototyping tool,

(3) Design dictionary,

(4) Syntax directed source code editor,
(5) Source code manager,

(6) Software release builder,

- 23 - ERL-0372-RE

(7) Rebuild optimiser,

(8) Static analyser,

(9) Frequency analyser,

(10) Timing or performance analyser,

(11) Source code debugger,

(12) Path coverage tool,

(13) Test manager,

(14) Target machine emulator,

(15) Office administration tools such as word processors, graphics
managers, general purpose data base managers.

(8) The permanent allocation of staff to select, develop and maintain
software tools and train staff in their use, is seen as essential for any
large software development project.

(9) A relational data base management system (DBMS) is recommended for use
in all tactical command control information systems to simplify program
development and reduce software maintenance problems.

(10) A relational query language such as SQL is recommended for adoption
as the standard for all tactical command control information systems. The
use of a general purpose relational data base is recommended for quickly
developing special data dependent tools such as requirements and design
dictionaries where these tools are not available commercially.

(11) The Ada programming language should be chosen as the standard
language in all Australian developed defence projects, and for the support
of as many systems purchased overseas as practicable.

(12) An Ada Programming Support Environment should be used for Defence
related projects.

(13) The translation of existing software to Ada is useful in simple
cases, but is not recommended for critical packages, or for programs which
will have a long maintenance lifetime. Except in simpler cases, existing
software should be redesigned and rewritten in Ada.

13. ACKNOWLEDGEMENT

The author is grateful to Mr P. Dart, for preparing Appendix I, based on his
experience with the Ada programming language while at the Naval Combat Data
Centre, Fyshwick, Canberra.

ERL-0372-RE

No.

10

Author

Hosier, W.

Brooks, F.

Freeman, P. and
Wasserman, A. (Editors)

Rochmore, J.

Commonwealth Dept of
Local Government and
Administrative Services

US Department of
Defence

Wasserman, A.

Wasserman, A. and
Freeman, P.

Yourdon, E. and
Constantine, L.

Page-Jones, M.

- 24 -

REFERENCES

Title

"Pitfalls and Safeguards in Real Time
Digital Systems with Emphasis on
Programming".

IRE Transactions on Engineering
Management Vol EM-8, No 2, pp.99-115,
June 1961

"The Mythical Man-Month".
1st Edition, Addison Wesley, MA, 1975

"Tutorial on Software Design
Techiques".

4th Edition, IEEE Computer Society
Press, Silver Spring, MD, 20910, 1983

"Knowledge-based Software Turns
Specifications into Efficient
Programs".

Electronic Design, Vol 33, No 17,
pp.105-112, July 25, 1985

"Commonwealth Purchasing Manual".
December 1983

"Defence System Software Development".
Military Standard DOD-STD-2167,

US Department of Defence, Washington,
DC 20301, June 1985

"Information Systems Design
Methodology'.

Journal of the American Society of
Information Science, Vol 31, No 1,
PP.5-24, January 1980

"Ada Methodologies: Concepts and
Requirements".

University of California, San
Francisco, CA, USA SIGSOFT SOFTWARE

ENG. NOTE (USA), Vol 8, No 1 pp.33-50,

January 1983

"Structured Design Fundamentals of a
Discipline of Computer Program and
System Design'.

1st Edition, Prentice Hall, NJ, 1979

"The Practical Guide to Structured
Systems Design'.
1st Edition, Yourdon Press, NY, 1980

No.

11

12

13

15

16

17

18

19

20

21

22

Author

deMarco, T.

Department of Defence

Jackson, M.A.

Jackson, K. and
Simpson, GPCAPT H.

Fichenscher, G.

Schindler, M.

Martin, J. and
McClure, C.

Wolfe, A.

US Department of
Defence

Narfelt, K.H. and
Schefstrom, D.

Leach, D.,
Parge, M. and
Satko, J.

Gutag, J.V.,
Horning, J.J. and
Wing, J.M.

- 25 -

Title

"Structured Analysis and System
Specification".
1st Edition, Prentice Hall, NJ, 1979

"SPECTRUM Project Management/Systems
Development Methodology".

Department of Defence Circular
Memorandum 95/85, August 1985

"Principles of Program Design".
lst Edition, Academic Press, NY, 1975

"MASCOT - A Modular Approach to
Software Construction Operation and
Test".

RRE Technical Note No 778, October 1975

"Use of the MASCOT Philosophy for the
Construction of Ada Programs"
RSRE Rep 83009, October 1983

"Through Automation, Software Shapes
Itself to the Task in Hand".
Electronic Design, Vol 33, No 17,
pp.87-38, July 25, 1985

"Diagramming Techniques for Analysts
and Programmers’.
1st Edition, Prentice Hall, NJ, 1984

"AI Tools Automate Software
Translation’.

Electronics, Vol 58, No 38, pp.59-61,
September 1985

"Requirements for Ada Program Support
Environment" .

"Stoneman' Report, US Department of
Defence, February 1980

"Towards a KAPSE Database'.

IEEE Computer Society 1984 Conference
on Ada Applications and Environments,
pp.42-51, October 1984

"A Methodology for Rapid Prototyping".
IEEE 4th Annual Intermational
Conference on Computers and
Communications, Scottsdale, AZ,
pp.53-61, March 1985

"The Larch Family of Specification
Languages''.

IEEE Software, Vol 2, No 5, pp.24-36,
September 1985

ERL-0372-RE

ERL-0372-RE

No.

23

24

25

26

28

29

31

32

33

34

Author

Sammet, J. et al

Texas Instruments, Inc

Manuel, 0. and
Bonnet, C.

Intermetrics Inc

Luckham, D. and
von Henke, F.

Howden, W.E.

Miller, E.F. and
Howden, W.E. (Editors)

Ableidinger, B.,
Agawal, N. and
Nobles, C.

US Department of

Defense

Tompkins, H.

Mayoh, B.

Wolfendale, G. (Editor)

- 26 -

Title

"PDL/Ada - A Design Language based on
Ada".

ACM Ada Letters, Vol II, No 3,
pp.19-31, November 1982

"TI Ada PDL Manual.
Texas Instruments Inc, Equipment Group,
McKinney

"Ada as a Programming Design Language
for a Telematic Services Project".
IEEE Computer Society 1984 Conference
on Ada Applications and Environments,
pp.89-94, October 1984

"BYRON Program Development Language and
Document Generator Users' Manual".
Intermetrics Inc, Cambridge, MA,
October 1985

"An Overview of Anna, a Specification
Language for Ada".

IEEE Computer Society 1984 Conference
on Ada Applications and Environments,
pp.116-127, October 1984

"The Theory and Practice of Functional
Testing".

IEEE Software, Vol 2, No 5, pp.6-17,
September 1985

"Software Testing and Validation
Techniques". ,
IEEE Computer Society Tutorial, 1978

"Real-Time Analvser Furnishes High
Level Look at Software Operation'.
Electronic Design, Vol 33, No 22,
pp.117-131, September 19, 1985

"Military Standard: Ada Programming
Language".

ANSI/MIL STD 1815A, US Department of
Defense, Washington, DC

"In Defense of Teaching Structured
COBOL as Computer Science'.
SIGPLAN NOTICES, Vol 18, No 4,
pp.86-94, April 1983

"Problem Solving with Ada".
1st Edition, Wiley, NY, 1981

"Data Base Management Systems".
Proceedings of the Joint ANU/ACS One
Day Seminar held at the Computer Centre
of the ANU, 17 November 1976,
Australian National University Press,
Canberra, 1977

No.

36

37

38

39

40

41

Author

Tsichutyis, D. and
Lochoresky, F.

Date, C.

Deen, S.M.

Malabarba, F.

Pallard, J.

Myers, E.

Epstein, R.

- 27 =

Title

"Data Base Management Systems'.
1st Edition, Academic Press, Florida,
1977

"An Introduction to Database Systems".
2nd Edition, Addison Wesley, MA, 1977

"Fundamentals of Database Systems".
l1st Edition, MacMillan, NY, 1977

"Review of Available Database Machine
Technology'.
Naval Data Automation Command,

Washington, DC, Unpublished paper, June

1984

"The Database Machine is Now a
Reality".

Computer World, Australia, Vol 8, No 3,
pp.26-27, July 19, 1985 :

"Database Machines Take Off".
Datamation, Vol 31, No 10, pp.52-63,
May 15, 1985

"Why Database Machines".

Datamation, Vol 29, No 7, pp.139-144,
July 1983

ERL-0372-RE

ERL-0372-RE - 28 -

THIS IS A BLANK PAGE

- 29 - ERL-0372-RE

APPENDIX I
AUTOMATIC PASCAL TO ADA TRANSLATION

I.1 Introduction

An installation that has decided to convert to using a new programming
language has three basic options. Firstly, it may continue to use the old
programs, and therefore the old languages, until they become redundant.
Secondly, they may convert the old programs to the new language, either
automatically from the old source, or manually from some level of the old
specification. Thirdly, they may throw out the old programs altogether and
begin afresh. These options are not incompatible; some combination of all
three is likely to be used in any real situation and many factors need to
be considered in choosing what combination will provide the greatest cost
effectiveness in the long run. '

This appendix is concerned with the merits and difficulties involved in the
use of automatic translation from the programming language Pascal, to the
programming language Ada. In considering this particular option, it will
be necessary to make some comments on how this form of conversion would fit
in with the overall conversion process.

This appendix is more detailed than that required for a report of this
type. However, the details have been included here to provide some
background to the assertion that:

(a) Ada program structures can be significantly different from that of
Pascal, and

(b) the many advantages of the modern features of Ada could not be
utilized by direct mapping from Pascal into Ada.

The comments on Ada included in this Appendix were prepared by Mr P. Dart,
based on his experience with the language while at Naval Combat Data
Centre, Fyshwick, Canberra.

1.2 The software lifecycle

Although the topic at hand is one of automatic translation, there may arise
some difficulties that could be circumvented 'handrulically'. Manually
making changes of other than trivial complexity to the translator output
will cause problems if upgrading of the original program is desired at any
stage. The lifecycle of the translated program is critical in this
context. If the program is expected to be in use for a period that is
tikely to include a number of upgrades, then a choice must be made as to
whether the original programs or the translation must be changed. If the
original source is to be upgraded then the danger in other than a trivial
change to the tramslation is obvious. Also, the original source must be
kept around for the life of the program.

If the original source is not to be upgraded, then it may be discarded
(unless desired as backup). In this case, the translator output must be in
an easily readable form. This requirement is not insignificant; producing
comprehensible translations (suitable for wupgrading by a programmer
unfamiliar with the program) may be an order of magnitude more difficult
problem than producing merely executable ones. Some of the reasons for
this will be revealed in conjunction with the examples below.

ERL-0372-RE - 30 -

I.3 Pascal and Ada

The '"Programming Language Ada Reference Manual''(ref.31) contains the
following quote:

"...the language includes facilities offered by classical languages such as
Pascal as well as facilities often found only in specialised languages."

The first part of the statement reveals why it is a relatively simple task
to produce a Pascal to Ada translator. Almost every Pascal construct has a
direct counterpart in Ada, allowing a simple mapping from one to the other.
The output of using a translator that simply took advantage of this
mapping, though, is unlikely to be considered good under any criterion
other than correctness. This final statement will be justified in the next
section.

I.4 Specific language features

Following are a series of examples illustrating various features of the Ada
programming languages. These features are discussed in relation to their
Pascal counterparts, if any.

The first example given is an adaptation of a Cobol program that appears in
the April 83 issue of "Sigplan Notices' (ref.32).
Professor Howard E. Tompkins presents the original to highlight
shortcomings in Pascal.

The next 3 examples are based on code that appears in 'Problem Solving with
Ada' by Brian Mayoh(ref.3). The originals have been corrected and
improved, but the resulting code is not intended to represent the best
possible Ada code.

I1.4.1 Example 1
with text io; use text io;
procedure Future Day of Week is

type T-Day is (sun, mon, tue, wed, thu, fri, sat);
subtype T Positive is integer range O..integer'last;

package Day Io is new Enumeration_ Io(T Day);

use Day Io;

10 package Positive Io is new Integer Io(T Positive);
11 use Positive Io;

O 00~ U W

13 day: T Day;
14 elapsed days: T _Positive;

15
16 begin
17 put("Enter day of the week as three letters:'");
18 new_line; -- to flush the buffer
19 loop
20 begin
21 get(day);
22 exit;
23 exception
- 24 when Data Error =>
25 put_line("Input not recognized as a day of week');
26 put("Please try again:");

27 new_line; ~- to flush the buffer

- 31 - ERL-0372-RE

28 end;

29 end loop;

30 put("Enter future elapsed days:");
31 new_line; -- to flush the buffer
32 loop

33 begin

34 get(elapsed days);

35 exit

36 exception

37 when Data Error =>

38 put_line("Input not recognized as a positive number™);
39 put (""Please try again:");

40 new line; -- to flush the buffer

41 end;

42 end loop;
43 put('"Future day is a ');

44 put(T_Day'val(T_Day'pos(day)+elapsed_days)rem(T Day'pos(T Day'last)+1)));

45 new_line;
46 end Future Day of Week;

This example is largely an exercise in input handling. To achieve the
same functionality in Pascal would be a long, tedious task in
comparison. Some form of search on an array of packed arrays could be
used to convert the input string to an ordinal value, and the 'repeat
read until no errors' loops would be considerably more complex. The
declaration on line 5, which would probably be thought to appear in a
similar form in the Pascal equivalent, would in fact be of little use
since conversion from an ordinal value to an enumerated type in Pascal
is a troublesome task. Also, it should be noted that if some other
circular enumerated type was to be used instead of days of the week (eg
months of the year), only line 5 and the I/0O strings need be changed.
(The naming conventions could have been chosen more generically if this
was desired). Line 44 is the key to the flexibility of this Ada
program. The necessary constants and functions are direct attributes of
the enumerated type, thereby allowing the functional style of statement
in line 44 that is likely to appear in many Ada programs.

Since & Pascal program performing the same task as Example 1 would be
significantly more complex, the automatically translated version of such
a program using a straight forward mapping would also be far more
complex. For this reason, any translations of this sort would not reap
the benefits in readability, changeability, and efficiency that would
result from a direct coding in Ada.

1.4.2 Example 2

1 with Text Manipulator;
2 procedure Edit Data is
3 wuse Text Manipulator;
4 T: Text;

5 begin

6 T := Get Text;
7 loop

8 Correct(T);

9 end loop;

0 exception :
1

1
11 when No More Input=>

ERL-0372-RE - 32 -

12 begin

13 Renumber(T);
14 Put Text(T);
15 end;

16 end Edit Data;

Example 2 is a simple main program consisting of a simple loop. If
written in Pascal, a 'while' loop would be used. In fact, for the Ada
version, as it stands, a pre-tested loop would be more readable. The
form used in example 2 would be wuseful if a number of different
terminating conditions could arise; the exception handler would then
have the corresponding number of 'when' clauses. This, then is another
example where the sort of loop control used in Pascal would not map into
the style suggested for a direct Ada coding.

An Ada package 'Text Manipulator' is introduced in this example. One of
the greatest advantages of the Ada language is its packaging facilities,
and full use of them must be made to gain full benefits from the
language. Packaging is non-standard in Pascal. Versions that do have
some form of separate compilation facility vary from version to version,
and. generally only provide a very restricted form. A translator that
took Pascal source en masse would not be able to take full advantage of
the package facilities in Ada, and Ada libraries may already contain
code that could be used in an Ada version of the Pascal source.

I.4.3 Example 3

1 with Line Manipulator;

2 package Text Manipulator is

3 use Line Manipulator;

4

5 type Text is private;

6 No_More Input: Exception;

7

8 function Empty return Text;

9 function Get Text return Text;

10 procedure Put Text(T: Text);

11 procedure Correct(T: in out Text);
12 procedure Renumber(T: in out Text);
13 private

14 type Text is array (1..20) of Line;
15 end Text Manipulator;

17 with Text Io, Line Manipulator; use Text Io,Line Manipulator;
18 package body Text Manipulator is
19 package int-io is new integer io(integer); use int io;

21 L Index, P _Index: Position;
22 L:Line Manipulator.Line; C: Character;

23 Zero: constant integer := character'pos('0');
24

25 function Empty return Text is

26 begin

27 return (1..Text'last => (1..Position'last=> Ascii.LF));
28 end Empty

30 function Number return integer is
31 M : integer;

32 begin

33 M := 04

34 loop

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
9%

- 33 -

C := Next Character;
if C in '0"'..'9" then
M :=M* 10 + character'pos(C)-Zero;
else
return M;
end if;
end loop;
end Number;

procedure Correct(T:in out Text) is
begin

L := Get_Line;

L_Tndex:=Number;

if C = ':' then

T(L_Index) := Get Line;

else

T(L_Index..Text'last) :=

(L_Index..Text'last => (1..Position'last => Ascii.LF));

end if;
exception

when others => raise No_More Input;

end Correct;

procedure Put Text(T: Text) is
begin

L _Index := 1;

loop

ERL-0372-RE

if T(L Index)(1l) /= Ascii.LF then Put-Line{(T(L Index)); end if;

exit when L Index = Text'last';
L Index := L Index + 1;
end loop;

end Put Text;

procedure Renumber(T: in out Text) is
U: Text; M: integer;
begin
M :=2; U := Empty;
for L Index in Text'range loop
exit when M >= Position'last - 1:
if T(L Index)(1l) /= Ascii.LF then
U(M) := T(L Index); M := M + 2;
end if;
end loop;
T := U;
end Renumber;

function Get_Text return Text is
T: Text;
begin
T := Empty;
L Index := 2;
loop
T(L Index) := Get_Line;
L Index := L Index + 2;
end loop;
exception
when others => return T;
end Get Text;

end Text Manipulator;

ERL-0372-RE - 34 -

Lines 1 to 15 of Example 3 are the interface specification to the
'Text Manipulator' package. The ability to hide the internal
representation of a data type is demonstrated by lines 5, 13 and 14.

A problem that most Pascal programmers are familiar with is that of the
'N+1' constant. Often, a program has the constant N, but requires the
constant 'N+1' for a later type declaration. Ada solves this problem by
allowing constant expressions. A simple example is on line 23, but
these expressions may be used as array bounds in declarations (eg in the
form: Typeld'last+l), or anywhere else desired.

Aggregates and slices, as used on lines 27, 51 and 52 are another
feature of Ada that a translator would find difficulty making use of.
Together with attributes, these features encourage a functional styvle of
programming that is impossible in Pascal. The ability to take a slice
of an array allows an Ada compiler to make use of a 'block move'
instruction (if any), on the target machine, and so can be useful in
terms of efficiency. (There are versions of Pascal, such as UCSD, that
have a 'generic' «copy procedure to allow this efficiency. The
difficulty of mapping the use of procedures such as this into a strongly
typed language like Ada can be left to the reader's imagination).

Lines 72 to 77 are an example of a dual exit loop; a combination of the

"for' and 'while' loop constructs in Pascal. The function 'Get Text'
also demonstrates a different (though not necessarily desirable) form of
control. Neither of these forms would result from the translation of

Pascal source.
I1.4.4 Example &

package Line Manipulator is

type Line is new String(l..80);

subtype Position is integer range 0..Line'last;
Limit, Spaces: integer;

function Get Line(L: Line);

procedure Put Line(L: Line);

function Line_to_Character return character;
function Next Character return character;
procedure Insert (0ld Line: Line);
10 end Line Manipulator;

O 00~ vl B B

12 with Text_Io; use Text Io;

13 package body Line Manipulator is

14 Index: Position; L: Line;

15

16 procedure Insert (0ld Line: Line) is

17 begin

18 Limit:= 1;

19 while L(Limit) /= Ascii.LF and Limit < Position'last loop
20 Limit:= Limit + 1;

21 end loop;

22 L(1l..Limit):= 0ld Line(l..Limit);

23 Index:= 0;

24 end Insert;

25

26 function Next Character return character is

27 begin

28 if Index < Position'last then Index:= Index + 1; end if;
29 return L(Index);

30 end Next Character;

31

- 35 - ERL-0372-RE

32 function Line_to Character return character is
33 C: character;

34 begin

35 loop

36 C:= Next_Character;

37 case C is

38 when 'a'..'z' | Ascii.LF=> return C;
39 when others => null;

40 end case;

41 end loop;

42 end Line to Character;

43

44 function Get Line return Line is

45 C: character;

46 begin

47 Limit:= 0;Spaces:= 0;

48 loop

49 get(C);

50 if Limit < Position'last then

51 Limit:= Limit + 1;

52 L(Limit):= C;

53 if C = ' ' then Spaces:= Spaces + 1; end if;
54 end if;

55 exit when C = Ascii.LF;

56 end loop; '

57 Index:= 0;

58 return L;

59 end Get Line;

60

61 procedure Put Line(L: Line) is
62 begin

63 Limit:= 1;

64 loop

65 put (L(Limit));

66 exit when L(Limit) = Ascii.LF or Limit >= Position'last;
67 Limit:= Limit + 1;

68 end loop;

69 end Put Line;

70

71 end Line Manipulator;

Some of the gains in readibility, and therefore changeability through
the use of Ada instead of Pascal are visible is lines 3, 19 and 28 of
example 4. The use of the 'last attribute often saves the declaration
of unnecessary constants, and allows simple changes to be made at the
right place; where the declaration of the data type is made.

Line 38 demonstrates the use of ranges in the Ada case statement. This
particular example could be duplicated in Pascal with an if statement
and the set 'in' operator, but a more complicated series of case labels
would require a series of nested if-then-elses in Pascal. A translator
producing & similar series of if-then-elses in Ada would not give the
Ada compiler the opportunity to produce a jump table (as often used in
implementing a case statement) and would therefore be less efficient
than the hand coded Ada equivalent.

Another loop control construct appears on lines 64 to 68. This form of
'middle-tested' loop is not available in Pascal and usually requires the
use of boolean(s). The result is likely to be less readable and less
efficient.

ERL-0372-RE - 36 -

I1.4.5 Example 5

The next example is of a 'CSP' style 'sort' of an Ada string and is only
likely to be of interest to someone with reasonable understanding of

Ada.
1 with text io; use text io;
2 with TSort; use TSort;
3
4 procedure Test TSort is .
5 begin
6 put_line(Sort("edcbaabcde"));
7 end Test TSort;
8
)
10 packagé TSort is
11
12 function Sort(0_String: in string) return string;
13
14 end TSort;
15
16
17 with text io; use text ioj;
18
19 package body TSort is
20
21 subtype T Sort Element is character;
22

23 task type Sort Unit is

24 entry Store(Sort_Element: in T Sort Element);

25 entry Retrieve(Sort Element: out T Sort Element);
26 end;

28 type A Sort_Unit is access Sort Unit;

30 task body Sort Unit is

31 Next: A Sort Unit;

32 O_Sort_Element, Temp Sort Element: T Sort Element;
.33 Count: Natural:= 0;

34 Unit Name: constant string:= "Sort Unit';
35
36 begin

37 Select Loop: loop

38 select

39 accept Store(Sort Element: in T Sort Element) do
40 Temp_Sort Element:= Sort Element;

41 end Store;

42 if Count = 0 then

43 O_Sort Element:= Temp Sort Element;
44 else
45 if Count = 1 then

46 Next:= new Sort Unit;
47 end if;

48 if Temp_Sort Element >= 0 Sort Element then
49 Next.Store(Temp Sort Element);
50 else

51 Next.Store(0 Sort Element);

52 0O _Sort_Element:= Temp Sort Element;
53 end if;

54 end if;

55 Count:= Count + 1;

- 37 - ERL-0372-RE

56 or

57 when Count > 0 => ‘
58 accept Retrieve(Sort_Element: out T Sort Element) do
59 Sort_Element:= 0 Sort Element;

60 end Retrieve;

61 Count:= Count - 1;

62 exit Select Loop when Count = 0;

63 Next.Retrieve(O Sort Element);

64 or

65 terminate;

66 end select;

67 end loop Select Loop;

68 exception

69 when others=>

70 put_line(Unit Name & "~ exception"); raise;
71 end Sort Unit;
72

73 function Sort{(0 String: in string) return string is
74 SortL: A_Sort Unit;

75 Out_String: string(l..0 String'last):= (others => ' ');
76 Unit_Name: constant string:= "Sort";

77

78 begin

79 if O_String'Length = 0O then
80 return "'

3

81 else
82 SortL:= new Sort Unit;
83 for I in O String'range loop

84 SortL.Store(0 String(I));

85 end loop;

86 for I in Out String'range loop
87 SortL.Retrieve{Out String(I));
88 end loop; '

89 return Out String;

90 end if;

91 exception

92 when others =>

93 put_line(Unit Name & '- exception"); raise;
94 end Sort;
g5

96 end TSort;

This last example is not meant to be a practical Ada program. It does
work and is a useful demonstration of the tasking facilities in Ada. No
more than a few versions of Pascal make even a token gesture at
providing tasking facilities. Thus no translator would make use of
Ada's tasking facilities in translating from Pascal. The question that
this leaves us with is: Which, if any, Pascal programs, if writtem in
Ada, would make use of the tasking facilities? In fact there are likely
to be very few, but one important example is that of simulation. A
simulation program written in Pascal would have to provide many of the
facilities already available in Ada from scratch.

There are many features (particularly with respect to control) that have
not been pointed out in the above examples. These should be evident to
any Pascal programmer who scans this code. The author has noted from
his own experience that for an (experienced) Pascal programmer. Ada
seems like an extended form of Pascal. This effect soon wears off, as
the style of the Ada language itself becomes evident. Much of this
style comes from the use of Ada facilities not available in any form in
Pascal; eg aggregates, slices exception handlers. A more functional

ERL-0372-RE - 38 -

style seems in order; often, what is written as a procedure in Pascal
because of control information that needs to be passed back, can be
written as a function in Ada with the control handled by exception
handlers (if need be).

I.5 Conclusion

It has already been stated that (correct) automatic translation of Pascal
to Ada is unlikely to be a complex task. The above discussion suggests,
though, that many advantages of the Ada language would be lost if output
code from a translator was to be used for any significant period of time.
Some of the problems in translation mentioned above could be circumvented
through the use of complex semantic analysis in the translator, but this is
unlikely to be a total (or simple) solution.

The place for automatic translation of Pascal to Ada would seem to be only
in the early stages of the conversion of an installation to Ada from
Pascal. The old programs could be translated to get the installation as
close as possible to an 'Ada only' site, while work is under way to rewrite
the programs in Ada. It is important here to realize that rewriting in
this context means producing a completely new design, since a design with
Pascal in mind is unlikely to suit Ada. Thus only language independent
phases of the original design would be of use in rewriting. Priority
should be given to the most 'dynamic' of the translated programs. If a
program is likely to require modification in the near future, then it
should have been rewritten by the time the need arises.

Autcomatic translation from Pascal to Ada is likely to be most cost
effective if used in this limited scope.

- 39 - ’ ERL-0372-RE

APPENDIX II
DATA MANAGEMENT IN A TACTICAL COMMAND INFORMATION SYSTEM

A Command Control and Information System (CCIS) is required to store data
about dits operation and environment, in order to assist staff to make
decisions to support the commander's objectives. Consequently, a major task
which must be performed is the collection, processing and distribution of this
data so that it adequately meets the needs of the staff. Data in a CCIS must
be recognised as a valuable resource which must be managed effectively to make
maximum use of a limited commodity.

Systems which need to store only a small amount of data can do so quite
effectively through the use of sequential or random access files under the
computer's operating system. However, data requirements have a habit of
growing as systems mature, so data management may quickly become a significant
part of the support effort of even a small system.

Without proper data management, systems with medium to large data storage
requirements become unwieldy, as the effort to support a large number of files
requires many online computing demands., It is under these circumstances that
a Data Base Management System (DBMS), is essential.
JI.1 Data Base Management Systems
Data bases are used to store information about objects in the real world
and their relationship to each other. In addition, mechanisms must be
provided to retrieve this information in an effective manner so that the
information can be of use. The definition in(ref.34) summarises this quite
nicely. A data base is there defined as:
"a generalised integrated collection of data which is structured on natural
data relationships so that it provides all necessary access paths to each
unit of data in order to fulfil the differing needs of all users”.

A number of advantages flow from a well organised data base(ref.35).

(1) the amount of redundancy in the stored data can be reduced to that
essential for failsafe operation, :

(2) problems of inconsistency in the stored data can be avoided (to a
certain extent),

(3) stored data can be shared,

(4) standards can be enforced,

(5) 'security restrictions can be applied,

(6) data integrity can be maintained through appropriate authorization,
(7) conflicting user requirements can be balanced,

(8) data independence can be achieved ie the way data is stored is
independent of how the data relationships are defined.

ERL-0372-RE - 40 -

To achieve these advantages, it is essential for a data model to be defined
describing the data to be handled by the data base system. The data model
is a set of guidelines for the representation of the logical organisation
of the data. It is a pattern showing how the named logical units of data
are organised in their relationships to each other, without saying anything
about how data is physically stored.

Programs supporting a particular application make use of a logical 'view'
of the data base, that is, logical view encompasses as much of the data
model as the application is concerned with. Data models and views are

completely logical. This is, no implementation in terms of physical
storage structure is implied. In fact, it is possible to implement the
data base in a number of different ways, all supporting the same data
model.

The prime advantage of data independence, is that physical data structures
can be changed without needing any change to the logical view, and
therefore to the application program. Program maintenance is simplified,
and system implementers have more freedom to add new data fields, or to
rearrange data structures to fine tune data manipulations. In addition,
new hardware technologies can be introduced without causing application
reprogramming.

A Data Base Management System then, is a set of procedures and data
structures that isolate the applications from the details of creation,
retrieval, storage, modification, security and physical storage structure
.of computerised data bases. The important consideration is that no matter
how the data are organised or reorganised, the DBMS is always able to
provide an application with the same view.

The DBMS is thus an interface between the application program and the
physical copies of the data. Although a DBMS is by no means a necessity in
an information system, it is becoming increasingly clear that a DBMS is
required for effective management in an information systems environment.

DBMS's provide a number of valuable service facilities to support
applications:

(1) Performance optimisation: facilities to evaluate performance and
tune the data base to optimise response;

(2) Concurrent useage: the use of the data base by more than one user
at a time;

(3) Data protection: protection against loss or damage of data in the
data base and the protection of the confidentiality of the data from
unauthorised persons;

(4) Data organisation: a disciplined approach to managing the data
base.

I1.2 Data Models

In the tactical environment, staff have a perception of the totality of
events and occurrences on the battlefield, which corresponds to the real
world. As an aid to thought processes and communication with others, this
real world is modeled by storing certain information about it. Classes of
objects are defined, with each object class having certain attributes. For

- 41 - ERL-0372-RE

example, object type UNIT may have attributes UNIT NAME and LOCATION. The
set of possible values of an attribute is called a domain. A set of

attributes that uniquely determine an instance of an entity is called a
key.

Having decided on the objects about which information is to be stored, it
is necessary to also define the relationships between these objects, in the
form of a data model.

Relationships may be considered to be either attribute relationships, or

associations. Attribute relationships describe characteristics of an
object and are of interest only so long as the object exists. For example,
the status of & unit: Associations, on the other hand, describe a

relationship between objects, as for example, the association defining the
superior/subordinate relationship between two units.

Data models can be distinguished mainly as to how they represent
relationships among data. Most data models handle attribute relationships
in similar ways. However, associations are handled in different ways. The
two main approaches are relational, or network. (A third category,
hierarchical, is a special case of the network approach).

A network model consists of record types and links. Record types are used
to represent the relationships among attributes, while the links represent
the associations between entity sets.

In a relational model, all attribute relationships and all associations are
simply represented as relations.

These relationships are as important as the data itself, and can be stored
as part of the data base in the form of a data dictionary. This data
dictionary is used by application programs for obtaining a 'view' of the
data that is applicable to them.

IT1.3 Relational or Network Data Rase

Historically, the network approach to data bases was the first to come into
widespread use, since it evolved quite naturally from files representing
record types and the ability to cross link them. The CODASYL data base
proposal(ref.36) was defined in 1969 by the Data Base Task Group formed
with the US Defence Department to determine a common approach. A Data
Description Language (DDL) and a Data Manipulation Language (DML) was
defined and these have been used successfully since about 1971.

In 1970, E.F. Codd(ref.37) proposed a model for a generalised relational
data base system to provide data independence and data consistency which
are difficult to achieve in the network approach. This model has been
expanded and improved by Codd and is now regarded by many as the future of
all data base systems. Data structures in a network data base are designed
to meet specific application access requirements, and if the access
requirements change, then the data structures need to be changed as well.
However, Codd's relational model is free from such considerations as access
paths are universal - any data item value can be retrieved from one or more
relations with equal ease.

The relational model is simple, elegant and flexible. This has in part
been achieved by making the physical structure of data beneath the
relational model independent of the logical design. Information about the
real world can be represented faithfully, without having to introduce
artificialities or contortions. The data structures can evolve gracefully
as applications change or expand. The logical structure of the data can be

ERL-0372-RE - 49 -

easily understood, minimising errors. Relations are represented as tables,
and this is the only logical structure that need be considered. The
relational model provides wide freedom to the applications programmer by
enabling him to access any data item value in the data base directly,
rather than by its relative position or by a pointer.

I1.4 Data Query Language

As part of Codd's model, he developed a relational calculus based on the
standard operations of set theory. This formed the basis of his relational
query language called Data Sub-language ALPHA(DSL ALPHA). Since that time,
a number of other access languages have been developed, including SEQUEL
(Structural English Query Language) and SQUARE (Specifying Queries as
Relational Expressions).

These data query languages can be used directly from an interactive
terminal, or called from application programs written for specific
purposes. This language provides for the definition of user or application

~views of the data base as well as for the retrieval of data. A query
language is often included as part of a DBMS.

The simplicity of wuse of the relational model is an important
consideration. The tabular structure and ability to retrieve by value
("find UNITS with EQUIP = MEDIUM TRUCK") are simple and intuitive. This
allows a less experienced staff to implement a data base application, and
very often allows them to complete the work more quickly.

Because data entities and record types are not always known from the start
of a project, and this is particularly true for an evolving CCIS, the
ability to easily redefine data and data relationships becomes very
important. This is a feature of relational data base systems.

From these considerations, it becomes clear that relational DBMSs have many
characteristics which make then well suited for systems requiring data base
storage.

Structured Query Language (SQL) has become a defacto standard among
relational DBMSs, and many suppliers offer this support. The US Army is
considering the adoption of SQL as its standard query language for
relational data bases in an effort to reduce proliferation of languages,
and consequent increased software maintenance costs.

The use of a standard query language provides for a common programming
interface to the DBMS. This improves the portability of application
programs across projects.

A DBMS can be implemented in software on a host or in special purpose data
base machine (DBM) (see next section). A standard query language would
allow for both of these DBMS implementations, without changes to the
application software. This would allow projects to be initially developed
using a software DBMS, and then to migrate to a DBM when the system grows
beyond the initial capacity.

In a distributed CCIS, the choice of a host based DBMS or a DBM could be
based on the tactical level of the supported headquarters.

II.5 Data Base Machines
A DBMS can be regarded as simply a complex program which runs under the

control of a computer's operating system. The operating system interacts
with users logged onto the computer, and schedules their data base

- 43 - ERL-0372-RE

requirements by allowing them slices of time for access to the DBMS
program. Not all tasks involve data base searches, but, in an information
systems environment, all tasks compete with the DBMS for CPU time and disc
access. These computer resource demands by a DBMS can be significant, and
can reduce the computer's response to all users.

In an attempt to alleviate this conflict, separate data base machines have
been developed for performing this DBMS function (figure 34). The data
base machine (DBM) forms part of a dual processing system whereby the host
computer accepts data base requests from a user or application program, and
passes them ontc the DBM for processing. The DBM returns the result to the
host for dissemination to the calling program or user.

There are several advantages of a DBM.

(1) A DBM is normally a special purpose computer optimised to perform
specific data base functions. Data base machines can perform data base
operations much more quckly than a host computer.

(2) Relational data base management requires large programs and
consumes a large percentage of the capacity of the host. By moving
these tasks to a DBM, the host is free to perform other tasks, either by

accommodating more users or applications or by performing current tasks
faster.

(3) Several different hosts can share one DBM. The host computers may
be from different manufacturers, but can share the data base through
using the same host/DBM interface.

{(4) A DBM can provide enhanced performance at a cheaper cost than
upgrading an existing host. A smaller host can be used, or the lifetime
of an existing host can be extended.

{(5) A DBM can provide a shared data base resource as a data base server
to all computers in a computer network.

(6) The DBM technology can be upgraded with minimal effect on the
hosts.

A complete DBMS is formed by combining the hardware and software of a DBM
with interface software running on the host. The DBM implements all the
facilities of a relational data base management system, while the interface
software on the host provides facilities to manage communication with the
DBM, including language processors, report generators and screen handlers.
-The division of tasks between the DBM and host must be properly designed so
that the communications link between them does not become a bottleneck.
Early DBMs failed because of this bottleneck, but modern versions seem to
have overcome this problem(ref.39,40,41).

DBMs appear to be quite well suited for use in a tactical CCIS. The
development of the CCIS can be made simpler as more effort can be devoted
to the data model which will satisfy the user requirements. Several
application processors can share the DBM via a local area network, with
access authorisations defined by the DBM software. Data base backup and
recovery techniques are contained within the DBM system. Data storage can

be duplicated on one DBM, or two DBMs may be required for higher
reliability.

ERL-0372-RE - 44 -

I1.6 Data Base Implementation

A DBMS provides an interface between data users and the data storage
system. The principle of data independence ensures that the way data is
stored on the storage devices is independent of the user's view of the
data. Data models are defined which, in a relational data base, describe
logical relationships without dictating the storage techniques. Underlying
storage techniques can be changed, if necessary, without requiring any
changes to data models or application programs.

Within a DBMS, therefore, a number of different data files may be in use to
support the different relationships defined in the model.

Files are a named collection of records containing the occurrences of one

or more record type. A particular record may belong to one physical file,
but to many logical files. '

Files may be grouped into six categories - serial, sequential, indexed,
direct, inverted, 1list. Many wvariations of these six categories are
possible to provide different features. Many text books(ref.34,35,36) are
available which examine these techniques in detail.

The detailed implementation of a relational data base will involve some of
the above categories. It is dimportant to realise however, that a
relational data base description does not define how the physical data is
to be stored, just how it is to be logically viewed.

The early implementations of relational data base systems were noted for
their large memory requirements and slow speed of operation. Modern
relational DBMS seem to have overcome these limitations to some extent
using techniques such as bit arrays and tree searching methods.

A relational data model may be efficiently designed at the start of the
development of a CCIS. However, as new relations are added during
development, new access paths need to be superimposed on the existing
physical storage structure. This may result in some slow responses to
these new relations. At some stage during development, the physical
structure may need to be reorganised to integrate the enlarged requirement
into a comprehensive design. However, the ability to add relations
temporally, even if somewhat inefficiently, during development, is useful.

The physical implementation of a relational data base in a tactical
environment would need to be done with more care than in a support
environment. Tactical application programs will allow only a defined type
of access to the data base and so the access paths become well defined.
Under these conditions, the data base structure can be designed to provide
maximum performance. Those access paths which are used frequently could be
provided with maximum efficiency, while those used infrequently would
receive a lower priority of response. Alternatively, some types of
retrieval would not be required 'instantly', particularly those used for
planning purposes in an HQ, and therefore could have their performance
sacrificed in order to better support more critical tasks.

100

CosT
RATIO

50

20

10

ERL-0372-RE

Figure 1
SOURCES UPPER BOUND
: * 1BM-SDD
- * TRW
* GTE
* BELL LABS
LOWER
BOUND
| I] | i
- > \ > > ‘ > > ‘ >
MODULE
DESIGN INTEGRATION OPERATION
FUNCTIONAL CODE &
DESIGN TEST VALIDATION

Figure 1. Cost of correcting a mistake in requirements

ERL-0372-RE
Figure 2

MAJOR ACTIVITI ES[D

DOCUMENTATION m

LIFE-CYCLE
STEPS

FORMAL
BASELINES

H——— SYSTEMS ENGINEERING ———

[€—— DEFINE REQUIREMENTS ————»}

e DESIGN e

(—— SOFTWARE DEVELOPMENT ——3»

Software lifecycle

diagram

(e TEST & EVALUATION ——————»

1—BUILD —Piet——TEST ——t— OPERATE ——]
SOFTWARE TEST TEST TEST
DEVELOPMENT PLANS PROCEDURES REPORT
PLAN
USER APPROVED
REQUIREMENTS SYSTEM
DOCUMENT SPEC DRAFT
DRAFT SOFTWARE
SYSTEM DESIGN
SPEC SPEC APPROVED
DRAFT SOFTWARE
SOFTWARE DESIGN
REQUIREMENTS SPEC
SPEC PRELIM
PROGRAM
APPROVED PACKAGE
SOFTWARE APPROVED
REQUIREMENTS PROGRAM
SPEC PACKAGE
UPDATED
PROGRAM
PACKAGE
USER
RQMTS
SYSTEM
RQMTS
SOFTWARE
RAMTS
PRELIM
DESIGN
DETAILED
DESIGN
CODE &
DEBUG
FUNCTIONAL
BASELINE VERIF
TESTING
ey
TESTING
OPERATION
& MAINT
PRODUCT
BASELINE
Figure 2.

ERL-0372-RE

Figure 3
MANAGEMENT -
PROCEDURES
Help Select & PRACTICES Provide
Automated Visible
Tools Structure
Provide Coordinate
Management \ and
Information Guide
SOFTWARE
DEVELOPMENT
METHODOLOGY
\ \
TECHNIC
AUTOMATED ¢ AL
TOOLS METHODS &
TECHNIQUES
1} A
Support Methods
Determine Needed Technical Tools
Figure 3. Software development methodology

- DOCUMENT CONTROL DATA SHEET

Security classification of this page UNCLASSIFIED
1 DOCUMENT NUMBERS 2 SECURITY CLASSIFICATION
AR a. Complete
Number: AR-004-637 Document: Unclassified
Series b. Title in
Number: ERL-0372-RE Isolation: Unclassified
Other ¢. Summary in
Numbers: Isolation: Unclassified
3| TITLE
MANAGING SOFTWARE COMPLEXITY
4 | PERSONAL AUTHOR(S): 5| DOCUMENT DATE:
P.F. Calder July 1986
6| 6.1 TOTALNUMBER
OF PAGES 47
6.2 NUMBER OF
REFERENCES: 41
71 7.1 CORPORATE AUTHOR(S): 81 REFERENCE NUMBERS

Electronics Research Laboratory

a. Task: ARM 83/109

b. Sponsoring Army Research Request

Agency: 1159/82
7.2 DOCUMENT SERIES
AND NUMBER 9| COST CODE:
Electronics Research Laboratory
0372-RE 442981/126
10| IMPRINT (Publishing organisation) 11| COMPUTER PROGRAM(S)

(Title(s) and language(s))

Defence Research Centre Salisbury

12

RELEASE LIMITATIONS (of the document):

Approved for Public Release

Security classification of this page:

UNCLASSIFIED]

Security classification of this page: UNCLASSIFIED

13| ANNOUNCEMENT LIMITATIONS (of the information on these pages):

No limitation

14| DESCRIPTORS:

a. EJC Thesaurus
Terms

Systems analysis
Systems management
Computer programming

15| COSATI CODES:;

b. Non-Thesaurus
Terms

Program development systems
Spectrum

05010
09020

16 | SUMMARY OR ABSTRACT:

(if this is security classified, the announcement of this report will be similarly classified)

This report examines the methodologies and tools available to the manager
and programmer for assisting in the development of large software projects.

Security classification of this page: UNCLASSIFIED

	Summary
	Contents
	1. Introduction
	2. Aim
	3. The importance of user requirements
	4. Managing software contracts
	5. Software development methodologies
	6. The impact of software tools on methodologies
	7. Data management
	8. ADA programming language
	9. ADA programming environment
	10. Software development tools
	11. Conclusions
	12. Recommendations
	13. Acknowledgement
	References
	Appendix I Automatic pascal to ADA translation
	Appendix II Data management in a tactical command information system
	Document Control Data

